EST-384: Análisis de Series de Tiempo Univariado

Identificación

Asignatura: Análisis de Series de Tiempo Univariado

Sigla: EST-384

Area Curricular: Modelos Matemáticos

Modalidad: Semestral

Nivel Semestral: Octavo Semestre, Ciclo de Orientación

Horas Teóricas: 4 por semana en dos sesiones Horas Prácticas: 2 por semana en una sesión Horas de Laboratorio 2 por semana en una sesión

Pre-Requisitos Formales: OPM-396

Carreras destinatarias: Matemática y Area de Ciencia y Tecnología

Objeto de la Materia

El objeto de la asignatura es el desarrollo teórico y aplicación de la modelización de series de tiempo univariados, tanto desde la perspectiva determinística como estocástica.

Objetivos generales

Estudiar los modelos de suavizamiento (smoothing) de series de tiempo univariados y su modelización estocástica en el dominio del tiempo (Modelos ARIMA)

Programa Sintético

Métodos de suavizamiento. Enfoque Estocástico. Procesos Estocásticos Estacionarios. Modelos Estocásticos de Series de Tiempo. Enfoque General de la Metodología de Box-Jenkins. Predicción. Análisis de Intervención y outliers.

Contenidos analíticos

- 1. Métodos de suavizamiento: 1.1 Diversos métodos de ajuste de curvas a un conjunto de puntos bajo enfoque determinístico 1.2 El método de Holdrick-Prescott
- 2. Enfoque estocástico: 2.1 Introducción 2.2 Operadores de resago 2.3 Ecuaciones en diferencia 2.4 Condiciones iniciales y sucesiones no acotadas
- 3. Procesos Estocásticos Estacionarios: 3.1 Estacionariedad fuerte 3.2 Estacionariedad débil 3.3 Función de autocorrelación 3.4 Función de autocorrelación parcial
- 4. Modelos Estocásticos de Series de Tiempo: 4.1 Introducción 4.2 Modelos de Medias Móviles(MA) 4.3 Modelos Autoregresivos(AR) 4.4 Modelos ARMA 4.5 Modelos Estocásticos Lineales no estacionarios homogéneos: Modelos ARIMA 4.6 Modelos Estocásticos Estacionales: Modelos SARIMA
- 5. Enfoque General de la Metodología de Box-Jenkins: 5.1 Análisis de estacionariedad e identificación 5.2 Estimación 5.3 Análisis de coeficientes estimados 5.4 Análisis de residuos 5.5 Sobreajustes 5.6 Análisis de Estacionalidad
- 6. Predicción: 6.1 Predictor óptimo 6.2 Cálculo de la predicción puntual para modelos ARI-MA 6.3 Predicción por intervalos

7. Análisis de Intervención y outliers: 7.1 Introducción 7.2 Modelos de intervención 7.3 Identificación de los modelos de intervención 7.4 Tipos y efectos de los outliers 7.5 Detección y tratamiento de outliers

Modalidad de Evaluación

La evaluación es formativa periódica y sumativa, los exámenes parciales o finales pueden ser escritos u orales.

Examen	Temas	Ponderación
Primer Parcial	Capítulo(s) 1, 2 y 3	20%
Segundo Parcial	Capítulo(s) 4	20%
Tercer Parcial	Capítulo(s) 5 y 6	20%
Examen Final	Todos los Capítulos	25%
Prácticas	Todos	15%
Recuperatorio	Algún examen parcial	El mismo
		100 %

Se puede recuperar cualquier examen parcial, pero no el examen final. La nota del examen de recuperación reemplaza al puntaje anterior.

Métodos y Medios

Los métodos de aplicación del proceso curricular de la materia están contenidas en el proceso de enseñanza y aprendizaje centrada en el alumno para lograr un aprendizaje significativo con razonamientos inductivos y deductivos y un aprendizaje por descubrimiento programado, orientado, puro libre y al azar que permita al estudiante desarrollar su potencialidad creativa, y entre los medios tenemos a docentes calificados con post grados en Matemática y en Educación, una biblioteca especializada con textos de todas las materias, servicio de internet, aplicaciones computacionales para ajustar los modelos y otros equipos educativos en la vía de una educación personalizada.

Bibliografía

- [1] V. Guerrero, (1991), Modelos Lineales con Econometría, Colección CBI.
- [2] M.G. Kendall, (1973), Time Series, Ed. C. Griffin & Company Limited.
- [3] J.D. Hamilton, (1994), Time Series Analysis, Princeton University Press.