MAT-304: Modelos Matemáticos Aplicados - Area Física Teórica

Identificación

Asignatura: Modelos Matemáticos Aplicados - Area Física Teórica

Sigla: MAT-304

Area Curricular: Modelos Matemáticos

Modalidad: Semestral

Nivel Semestral: Décimo Semestre, Ciclo de Orientación

Horas Teóricas: 4 por semana en dos sesiones Horas Prácticas: 2 por semana en una sesión Horas Laboratorio 2 por semana en una sesión

Pre–Requisitos Formales: FIS–206

Carreras destinatarias: Matemática y Area de Ciencia y Tecnología

Objeto de la Materia

El objeto de la asignatura es el desarrollo y la aplicación de los modelos matemáticos en el area de Física Clásica.

Objetivos generales

Desarrollar el formalismo de la Física-Teórica y la Física-Matemática relacionada a la fundamentación, estudio y modelaje realista de la Física Clásica de los medios discretos y medios continuos. La introducción en la Mecánica de conceptos modernos, tales como el grado de libertad, espacios de configuración y de fases, los principios variacionales de la naturaleza y otros, hacen que esta materia tenga validez no nulo en el ambiente académico educativo universitario, sino también en areas de ingenieriles y de aplicación tecnológica especialmente en las areas de Física Computacional y sus disciplinas afines. Si se considera a la Física como la reina de las ciencias naturales, entonces la Mecánica Clásica (también llamada en sus versiones universitarias Mecánica Teórica o Mecánica Analítica y su versión informática Mecánica Clásica Computacional) es la reina de las disciplinas de la Física por su sin fin de aplicaciones y sus consecuencias en las otras ramas de las Ciencias Físicas mismas y Naturales. Además el presente módulo ofrece la posibilidad de ser dictada de manera computacional por medio de sistemas algebraicos computacionales (CAS) a la par del avance de los diferentes capítulos o partes que conforman el programa.

Programa Sintético

Mecánica Newtoniana. Mecánica de Lagrange. Mecánica de Hamilton. Simetrías del Movimiento y la Mecánica Tensorial. Mecánica de Medios Continuos. Mecánica variacional de Medios Continuos. Física Clásica Computacional.

Contenidos analíticos

- 1. Mecánica Newtoniana: 1.1 Geometría Diferencial Aplicada al estudio de curvas de trayectoria en el espacio físico 1.2 Mecánica vectorial y Mecánica escalar de sistemas físicos conformados por una y varias partículas 1.3 Aplicaciones sencillas relacionadas a sistemas mecánicos discretos y cuerpos rígidos
- 2. Mecánica de Lagrange: 2.1 Los conceptos del grado de libertad del movimiento y de coordenada generalizada 2.2 El principio de Hamilton y el formalismo de Lagrange de Mecánica

- Clásica 2.3 Funciones de Lagrange modificadas 2.4 Aplicaciones: El problema de Kepler y la gravitación clásica, el sólido rígido, etc.
- 3. Mecánica de Hamilton: 3.1 Transformaciones de Legendre 3.2 La función de Hamilton y las ecuaciones canónicas de movimiento 3.3 El espacio de fases 3.4 Corchetes de Poisson, de Dirac, y de Lagrange 3.5 Sistemas restringidos y sistemas singulares 3.6 restricciones de primera y segunda clase
- 4. Simetrías del movimiento y la Mecánica tensorial: 4.1 Sistema de referencia inerciales 4.2 Las transformaciones de Galileo 4.3 El Teorema de E. Noether las propiedades de homogeneidad e isotropía del tiempo del espacio 4.4 La descripción mecánica de la naturaleza respecto de sistemas de referencia no inerciales 4.5 Transformaciones entre sistemas de referencia y sus consecuencias dinámicas 4.6 Ecuaciones de moviumiento en sistemas de referencia no inerciales 4.7 Aplicaciones: Pseudo-fuerzas en sistemas de referencia rotantes, estudio de Euler del sólido rígido, colisiones y fenómenos de dispersión, etc.
- 5. Mecánica de medios Continuos: 5.1 Caracterización de sistemas mecánicos con infinitos grados de libertad 5.2 La ecuación de continuidad y la ecuación de Euler 5.3 Termodinámica de medios continuos 5.4 Aplicaciones: Mecánica de fluidos, mecánicas de medios elásticos, etc.
- 6. Mecánica Variacional de Medios Continuos: 6.1 El formalismo de Lagrange y el principio de Hamilton para sistemas distribuidos 6.2 Densidades de Lagrange y ecuaciones de campo 6.3 Formalismo de Hamilton y ecuaciones canónicas de campos 6.4 Caracterización de sistemas mecánicos con infinitos grados de libertad 6.5 Electrodinámica de medios continuos 6.6 Teoría de calibre 6.7 Medios cuánticos
- 7. Física Clásica Computacional: Por medio de esta unidad se pondrá en conocimiento práctico del educando los últimos adelantos de la ciencia computacional relacionadas al campo de las ciencias naturales y de la enseñanza, así también sus múltiples aplicaciones en Física, Matemática, Química, Biología, areas aplicadas de ingeniería y en especial el area de Informática. Se dará énfasis en el uso de los principales CAS como MuPAD, Maple, Mathematica. Además se aplican los métodos y formalismos descritos por cada una de las disciplinas de la Física Clásica en forma de algorítmos computacionales.

Modalidad de Evaluación

La evaluación es parte del proceso de elaboración de proyectos con aplicaciones computacionales de las diferentes partes desarrolladas.

Bibliografía

- [1] Herbert Goldstein, Mecánica Clásica, Adison Wesley Company Inc.
- [2] Dare A. Wells, Dinámica de Lagrange, Mc. Graw-Hill
- [3] Landau y Lifshitz, Mecánica, Ed. Reverté S.A.
- [4] Landau y Lifshitz, *Electrodinámica*, Ed. Reverté S.A.
- [5] Landau y Lifshitz, Mecánica de Fluidos, Ed. Reverté S.A.
- [6] Landau y Lifshitz, Teoría de Elasticidad, Ed. Reverté S.A.

Mas los textos clásicos de Teoría Clásica y Cuántica de Campos, también de Teorías de Relatividad Einsteniana