MAT-372: Análisis II

Identificación

Asignatura: Análisis II
Sigla: MAT-372
Area Curricular: Análisis
Modalidad: Semestral

Nivel Semestral: Séptimo Semestre, Ciclo de Orientación

Horas Teóricas: 4 por semana en dos sesiones Horas Prácticas: 2 por semana en una sesión

Pre–Requisitos Formales: MAT–252

Carreras destinatarias: Matemática y Area de Tecnología

Problema (Por qué)

La teoría de la medida que se desarrolla en el curso, se la construye sobre un conjunto abstracto y una medida no necesariamente finita, lo cual extiende al clásico teoría de probabilidades que permite modelar el azar.

Objeto de la Materia

El objeto de la materia es la teoría de la medida sobre espacios medibles abstractos y medida abstracta.

Objetivos Generales

Que el estudiante aprenda los conceptos de la teoría de la integral abstracta de Lebesgue.

Programa sintético

Funciones medibles. Medidas. La integral. Funciones integrables. Los espacios de Lebesgue L_p . Modos de convergencia. Descomposición de medidas. Generación de medidas. Medidas producto.

Contenidos analíticos

- Funciones medibles: 1.1 Introducción, Los reales extendidos, Limite superior e inferior de sucesiones 1.2 Sigma algebras 1.3 Funciones medibles 1.4 Operaciones y límites de funciones medibles
- 2. Medidas: 2.1 Espacio de medida 2.2 Propiedades casi por doquier
- 3. La integral: 3.1 La integral de funciones simples y funciones positivas 3.2 Teorema de la convergencia monótona 3.3 Lema de Fatou 3.4 Propiedades de la integral
- 4. Funciones integrables: 4.1 Funciones integrables 4.2 Propiedades de positividad y linearidad de la integral 4.3 Teorema de la convergencia dominada de Lebesgue 4.4 Dependencia de parámetros
- 5. Los espacios de Lebesgue L_p : 5.1 Espacios normados 5.2 Desigualdades de Holder y de Minkowski 5.3 Completitud 5.4 El espacio L^{∞}
- 6. Modos de convergencia: 6.1 Convergencia en L_p , uniforme, casi por doquier 6.2 Convergencia en medida 6.3 Convergencia casi uniforme 6.4 Relaciones entre ellos

- 7. Descomposición de medidas: 7.1 Teoremas de descomposición de Hahn y de Jordan 7.2 Teorema de Radon Nikodim 7.3 Teorema de descomposición de Lebesgue
- 8. Generación de medidas: 8.1 Algebras y medidas 8.2 Extensión de medidas 8.3 Teoremas de extensión de Carathéodory y de Hahn 8.4 La medida de Lebesgue 8.5 Medidas de Lebesgue-Stieljes
- 9. Medidas producto: 9.1 La medida producto 9.2 Lema de la clase monótona 9.3 Teoremas de Fubini y Tonelli

Modalidad de Evaluación

La evaluación es formativa periódica y sumativa, los exámenes parciales o finales pueden ser escritos u orales.

Examen	Temas	Ponderación
Primer Parcial	Capítulo(s) 1, 2 y 3	20%
Segundo Parcial	Capítulo(s) 4, 5 y 6	20%
Tercer Parcial	Capítulo(s) 7, 8 y 9	20%
Examen Final	Todos los Capítulos	25%
Prácticas	Todos	15%
Recuperatorio	Algún examen parcial	El mismo
		100%

Se puede recuperar cualquier examen parcial, pero no el examen final. La nota del examen de recuperación reemplaza al puntaje anterior.

Métodos y Medios

Los métodos de aplicación del proceso curricular de la materia están contenidas en el proceso de enseñanza y aprendizaje centrada en el alumno para lograr un aprendizaje significativo con razonamientos inductivos y deductivos y un aprendizaje por descubrimiento programado, orientado, puro libre y al azar que permita al estudiante desarrollar su potencialidad creativa, y entre los medios tenemos a docentes calificados con post grados en Matemática y en Educación, una biblioteca especializada con textos de todas las materias, servicio de internet, equipos educativos y una educación personalizada.

Bibliografía

[1] Bartle, The Elements of Integration.