ARTÍCULO 7.

El Teorema del índice de Morse

OSCAR BOBARIN FLORES¹

Raúl Borda²

Resúmen

Básicamente el teorema de **Morse** es una generalización de un resultado clásico de Jacobi que afirma que un segmento de geodésica minimiza la longitud de arco relativamente a las curvas vecinas de mismas extremidades si y sólo si este segmento no posee puntos conjugados.

7.1 Introducción

 $\mathbf{B}^{\mathrm{\acute{A}SICAMENTE}}$ el teorema de **Morse** es una generalización de un resultado clásico de Jacobi que afirma que un segmento de geodésica minimiza la longitud de arco relativamente a las curvas vecinas de mismas extremidades si y sólo si este segmento no posee puntos conjugados.

7.2 El teorema del Índice

SEA la geodésica $\gamma:[0,a] \longrightarrow M^n$. Consideremos además el espacio vectorial $\psi(0,a)=\psi$ formado por los campos vectoriales V a lo largo de γ , de diferenciables por partes y tale que V(0)=V(a)=0. Definimos a la forma del índice de γ como la forma cuadrática asociada a la forma bilineal simétrica I_a definida en ψ por

$$I_a(V, W) = \int_0^a \left\{ \langle V', W' \rangle - \langle R(\gamma', V) \gamma', W \rangle \right\} dt$$

En general el índice de una forma bilineal B en un espacio vectorial V a la dimensión máxima es un subespacio de ψ en el cual B es negativa definida. La nulidad de B es la dimensión del subespacio ψ formado por los elementos V de ψ tales que B(V,W)=0 para todo $W\in\psi$; tal subespacio es espacio nulo de B. Decimos que B es degenerada si su nulidad es estrictamente positiva.

Teorema 7.1 (Teorema del Índice de Morse). El índice de la forma I_a es finito e igual al número de puntos $\gamma(t)$, 0 < t < a, conjugados $\gamma(0)$, cada uno contado con su multiplicidad.

La demostración está basada en las siguientes Proposiciones 7.2 y 7.3.

Proposición 7.2. Un elemento de $V \in \psi$ pertenece al subespacio nulo de I_a si y sólo si V es un campo de Jacobi a lo largo de γ .

¹obobarinflores@gmail.com Universidad Mayor de San Andrés

²rbordav@gmail.com, Universidad Mayor de San Andrés

Demostración. Como V \in V, entonces V es un campo vectorial lo largo de γ diferenciable por partes, entonces apenas para un número finito de puntos t_j : j = 1, 2..k - 1,

$$\frac{DV}{dt}(t_j^-) \neq \frac{DV}{dt}(t_j^+)$$

Ahora bien

$$\int_0^a \left\langle \frac{D^2 V}{dt^2} + R(\gamma', V) \gamma', W \right\rangle dt = \sum_{i=1}^{k-1} \left\{ \int_{t_i}^{t_{i+1}} \frac{d}{dt} \left\langle \frac{dV}{dt}, W \right\rangle dt - \int_{t_i}^{t_{i+1}} \left\langle \left\langle \frac{DV}{dt}, \frac{DW}{dt} \right\rangle - R(\gamma', V) \gamma', W \right\rangle dt \right\}$$

Entonces

$$\int_0^a \left\langle \frac{D^2 V}{dt^2} + R(\gamma', V) \gamma', W \right\rangle dt = \sum_{i=1}^{k-1} \left\{ \left\langle \frac{dV}{dt}, W \right\rangle \Big|_{t_i}^{t_{i+1}} \right\} - I_a(V, W)$$

Así

$$I_a(V,W) = -\int_0^a \left\langle \frac{D^2V}{dt^2} + R(\gamma',V)\gamma',W \right\rangle dt + \sum_{i=1}^{k-1} \left\langle \frac{DV}{dt}(t_i^+) - \frac{DV}{dt}(t_i^-),W(t_i) \right\rangle$$

 (\Leftarrow) Si V es un campo de Jacobi entonces

$$\frac{D^2V}{dt^2} + R(\gamma', V)\gamma' = 0$$

Así, V pertenece al espacio nulo de $I_a(V, W)$, para todo W en Ψ

 (\Longrightarrow) Supongamos ahora que $I_a(V,W)$, para todo W en Ψ . Sea $0 \le t_0 < t_1 < < t_{k-1} < t_k = a$ una subdivisión de [0,a] tal que la restricción $V_{|[t_{j-1},t_j]}$ es diferenciable, j=1,...,k

Sea $f:[0,a]\longrightarrow R$ una función diferenciable con f(t)>0 y para $t\neq t_j$, y $f(t_j)=0$ Como es verdad para todo W en Ψ , tenemos

$$W(t) = f(t)(V'' + R(\gamma', V)\gamma')$$

$$0 = I_a(V, W) = -\int_0^a \left\langle V'' + R(\gamma', V)\gamma', f(t)(V'' + R(\gamma', V)\gamma') \right\rangle dt = \int_0^a f(t) \|V'' + R(\gamma', V)\gamma'\|^2 dt$$

Entonces $\|V''+R(\gamma',V)\gamma'\|^2=0$ y así cada $V_{|_{[t_{j-1},t_{j}]}}$ son campos de Jacobi. Para ver que ocurre en cada t_{j} , definimos $t\in V$ por

$$T(t_j) = \frac{DV}{dt}(t_j^+) - \frac{DV}{dt}(t_j^-)$$
 $j = 1, ..., k - 1$

Como

$$0 = I_a(V, W) = \sum_{i=1}^{k-1} \left\| \frac{DV}{dt}(t_j^+) - \frac{DV}{dt}(t_j^-) \right\|^2$$

entonces $V \in C^1$ en cada t_j . Por la unicidad de las soluciones de una ecuación diferencial ordinaria, $V \in C^{\infty}$, así V es un campo de Jacobi.

44 RAÚL BORDA

Como cada punto de M está contenido en una vecindad totalmente normal y $\gamma_{|[0,a]}$ es compacto, podemos escoger una subdivisión $0=t_0< t_1<< t_k=a$ de [0,a] tal que cada $\gamma_{|[t_{j-1},t_j]}$, j=1,...,k esté contenido en una vecindad totalmente normal. Así cada $\gamma_{|[t_{j-1},t_j]}$ es una geodésica minimizante.

Sea $\Psi^-(0,a)=\Psi^-$ el subespacio vectorial Ψ formado por los campos V tales que $V_{[t_{j-1},t_j]'}j=1,...,k$ es un campo de Jacobi. Ψ^- tiene dimensión finita; Sea Ψ^+ el subespacio de Ψ constituido por los campos W tales que $W(t_1)=W(t_2)=\cdots=W(t_k)=0$.

Proposición 7.3. V es una suma directa $V = V^+ \bigoplus V^-$ y los subespacios V^+ y V^- son ortogonales en relación a I_a . Además I_a restricta a V^+ es positiva definida.

Demostración. Dado $V \in \Psi$, sea W un campo en Ψ^- dado por $W(t_j) = V(t_j)$; como $\gamma_{|[t_{j-1},t_j]}$ no tiene puntos conjugados, un tal W existe y es único. Así $V - W \in \Psi^+$ y por tanto $\Psi = \Psi^+ \bigoplus \Psi^-$. Además si $X \in \Psi^-$ y $Y \in \Psi^+$, se tiene que:

$$0 = I_a(X,Y) = \sum_{i=1}^{k-1} \left\langle 0, \frac{DX}{dt}(t_j^+) - \frac{DY}{dt}(t_j^-) \right\rangle = 0$$

es decir que Ψ^+ y Ψ^- son ortogonales relativamente a I_a . Como $\gamma_{|[t_{j-1},t_j]}$ con j=1,...,k son geodésicas, estas tienen energía menor que cualquier otro camino entre sus extremos. Luego si $V\in\Psi$, entonces $I_a(V,V)\geq 0$. Falta demostrar que $I_a(V,V)>0$ si $V\in\Psi^+-\{0\}$.

Por contradicción supongamos que $I_a(V,V)=0$ con $\in \Psi^+$, V=0. Afirmamos que esto implica que V pertenece al espacio nulo de I_a . En efecto si $W\in \Psi^-$, entonces $I_a(V,V)=0$, debido a la ortogonalidad arriba mencionada. Si $W\in \Psi^+$, consideraremos la desigualdad

$$0 \le I_a(V + cW, V + cW) = 2cI_a(V, W) + c^2I_a(W, W)$$

Válida para todo real c. Esto quiere decir que existen reales $A \ge 0$ y B tales que $Ac^2 + 2Bc \ge 0$ para todo c real, lo cual es posible sólo cuando B = 0, i.e., $I_a(W,W) = 0$. Por tanto V pertenece al espacio nulo de I_a . Como el espacio nulo está constituido de espacios de Jacobi y V se anula en t_j , concluimos que V=0, lo cual es una contradicción.

Ahora estamos en condiciones de demostrar el teorema del Índice

Demostración. [**Demostración del Teorema del Indice**] Introducimos primero la siguiente notación. Si $t \in [0, a]$, indicaremos por γ_t , a la restricción de γ al intervalo [0, t]; la forma del índice correspondiente será indicada por I_t , y el índice I_t se denotará por i(t). De esta manera, definimos una función $i:[0,a] \longrightarrow N$, cuyo comportamiento queremos estudiar.

Recordando que la subdivisión de [0,a] por puntos t_j j=0,...,k es fija y además $\gamma_{|[t_{j-1},t_j]}$ es una geodésica minimizante, concluimos que i(t) es cero en una vecindad de 0.

Afirmamos que i(t) es no decreciente. En efecto, por definición de i(t), existe un subespacio $\Omega \subset \Psi(0,t)$ tal que I, es negativa definida en Ω y dim $\Omega=i(t)$. Todo elemento $V\in\Omega$ se extiende a un elemento $V\in\Psi(0,t)$; definiendo $\overline{V}=0$ en $[t,\overline{t}]$. Es claro que $I_t(V,V)=I_{\overline{t}}(\overline{V},\overline{V})$. Por definición de índice, $i(\overline{t})\geq i(t)$.

Para obtener otras propiedades de i(t), notemos que el índice de I_t es el índice de la restricción I_t al subespacio $\Psi^-(0,t)$.

Supongamos que $t \in [t_{j-1}, t_j]$. Como cada elemento de $\Psi^-(0, t)$ es determinado por su valor en los puntos $\gamma(t_1), \cdots, \gamma(t_{j-1})$, tenemos que $\Psi^-(0, t)$ es isomorfo a la suma directa:

$$\Psi^{-}(0,t) = T_{\gamma(t_1)} \bigoplus \cdots \bigoplus T_{\gamma(t_{j-1})} = S_j$$

Podemos por tanto considerar las formas cuadráticas I_t como una familia de formas cuadráticas en un espacio fijo S_i y además I_t depende continuamente de t.

Si $\varepsilon>0$ es suficientemente pequeño, entonces $i(t-\varepsilon)=i(t)$. En cada punto conjugado a $\gamma(0)$, i deja de ser continua y da un salto igual a la multiplicidad del punto conjugado. Entonces podemos describir i(t) como una función que es cero en una vecindad del origen y es continua a la izquierda y tiene discontinuidad de salto en los puntos conjugados a el salto, siendo precisamente igual a la multiplicidad del punto conjugado.

46 Raúl Borda